-
고윳값, 고유벡터, 고유공간
고윳값, 고유벡터, 고유공간 고윳값, 고유벡터, 고유공간은 선형대수학의 핵심 개념 중 하나이며 이는 특정 벡터 공간에 대한 핵심적인 정보를 주므로 명확히 알아둘 필요가 있다. 간단히 개념을 정리해 보자. 고윳값, 고유벡터 $n \times n$ 정방 행렬 $A$와 상수 $\Lambda$에 대하여 $Ax = \Lambda x$가 성립하는 0이 아닌 벡터 $x$가 존재할 때, 상수 $\Lambda$를 행렬 $A$의 고윳값(eigenvalue)라고 하며, $x$를 이에 대응하는 고유벡터(eigenvector)라고 한다. 고윳값은 최소 1개에서 최대 서로 다른 n개(행렬 $A$의 랭크의 수)까지 존재할 수 있으며, 행렬 $A$의 모든 고윳값 집합을 행렬 $A$의 스펙트럼(spectrum)이라고 한다. 또, 이 ..
ML&DL/Math for ML
2024. 3. 20.
-
Rank, Basis, Span (+ Gram-Schmidt Process)
Rank, Basis, Span Rank, Basis 그리고 Span은 선형 대수학에서의 핵심 개념 중 하나이다. 이는 행렬 기반으로 연산이 수행되는 대부분의 머신러닝 개념의 근간이 되므로 잘 알아두는 것이 좋다. Rank Rank(랭크)는 행렬에서 선형 독립(일차 독립)인 행 또는 열의 최대 개수를 의미한다. 이는 또한 행렬이나 벡터 공간의 벡터로 만들 수 있는 부분 벡터 공간의 차원이다. 행렬의 실제 행 또는 열의 개수가 랭크보다 크다면 일부 벡터가 서로 선형 종속(일차 종속) 관계임을 알 수 있다. *일차 독립, 일차 종속이란? 일차결합, 일차종속, 일차독립 일차결합, 일차종속, 일차독립 일차결합 일차결합(Linear Combination)의 정의는 다음과 같다. 벡터공간 $V$의 공집합이 아닌 부..
ML&DL/Math for ML
2024. 3. 16.
-
일차결합, 일차종속, 일차독립
일차결합, 일차종속, 일차독립 일차결합 일차결합(Linear Combination)의 정의는 다음과 같다. 벡터공간 $V$의 공집합이 아닌 부분공간 $S$에 속하는 유한 개의 벡터 $u_1, ... , u_k$와 유한 개의 스칼라 $a_1, ... , a_k$에 대하여 다음과 같은 벡터 $v$를 $S$의 일차결합(Linear combination)이라 한다. $$ v = a_1u_1 + ... + a_ku_k $$ 이때, $v$는 벡터 $u_1,...,u_k$의 일차결합이며 $a_1,...,a_k$를 계수(Coefficient)라고 한다. * 여기서, 정의에 따라 벡터 한 개와 스칼라의 곱 또한 일차결합에 해당함에 유의하자. 부분 공간의 정의에 따라, $S$의 모든 일차결합은 $V$에 속한다. 증명) $..
ML&DL/Math for ML
2024. 1. 1.