-
고윳값, 고유벡터, 고유공간
고윳값, 고유벡터, 고유공간 고윳값, 고유벡터, 고유공간은 선형대수학의 핵심 개념 중 하나이며 이는 특정 벡터 공간에 대한 핵심적인 정보를 주므로 명확히 알아둘 필요가 있다. 간단히 개념을 정리해 보자. 고윳값, 고유벡터 $n \times n$ 정방 행렬 $A$와 상수 $\Lambda$에 대하여 $Ax = \Lambda x$가 성립하는 0이 아닌 벡터 $x$가 존재할 때, 상수 $\Lambda$를 행렬 $A$의 고윳값(eigenvalue)라고 하며, $x$를 이에 대응하는 고유벡터(eigenvector)라고 한다. 고윳값은 최소 1개에서 최대 서로 다른 n개(행렬 $A$의 랭크의 수)까지 존재할 수 있으며, 행렬 $A$의 모든 고윳값 집합을 행렬 $A$의 스펙트럼(spectrum)이라고 한다. 또, 이 ..
ML&DL/Math for ML
2024. 3. 20.
-
Rank, Basis, Span (+ Gram-Schmidt Process)
Rank, Basis, Span Rank, Basis 그리고 Span은 선형 대수학에서의 핵심 개념 중 하나이다. 이는 행렬 기반으로 연산이 수행되는 대부분의 머신러닝 개념의 근간이 되므로 잘 알아두는 것이 좋다. Rank Rank(랭크)는 행렬에서 선형 독립(일차 독립)인 행 또는 열의 최대 개수를 의미한다. 이는 또한 행렬이나 벡터 공간의 벡터로 만들 수 있는 부분 벡터 공간의 차원이다. 행렬의 실제 행 또는 열의 개수가 랭크보다 크다면 일부 벡터가 서로 선형 종속(일차 종속) 관계임을 알 수 있다. *일차 독립, 일차 종속이란? 일차결합, 일차종속, 일차독립 일차결합, 일차종속, 일차독립 일차결합 일차결합(Linear Combination)의 정의는 다음과 같다. 벡터공간 $V$의 공집합이 아닌 부..
ML&DL/Math for ML
2024. 3. 16.
-
최적화 알고리즘 - SGD, 네스테로프, AdaGrad, RMSProp, Adam
최적화 알고리즘 - SGD, 네스테로프, AdaGrad, RMSProp, Adam 신경망의 손실 함수가 복잡한 경우, 학습의 기본 최적화 알고리즘인 경사 하강법(Gradient Descent)과 미니 배치 훈련 방식으로 변형된 확률적 경사 하강법(Stochastic Gradient Descent, 이하 SGD)만으로는 최적해를 찾기 어려울뿐더러 학습 속도 또한 느리다. 이러한 한계를 극복하기 위해 확률적 경사 하강법을 변형한 많은 알고리즘이 제안되었다. 그중 주요 최적화 알고리즘인 SGD 모멘텀, 네스테로프 모멘텀, AdaGrad, RMSProp, Adam을 살펴보도록 하자. 확률적 경사 하강법의 문제점 확률적 경사 하강법의 개선 알고리즘들을 살펴보기 전에, 확률적 경사 하강법에는 어떠한 문제점이 있는지..
ML&DL/ML DL 기본기
2024. 1. 6.
-
일차결합, 일차종속, 일차독립
일차결합, 일차종속, 일차독립 일차결합 일차결합(Linear Combination)의 정의는 다음과 같다. 벡터공간 $V$의 공집합이 아닌 부분공간 $S$에 속하는 유한 개의 벡터 $u_1, ... , u_k$와 유한 개의 스칼라 $a_1, ... , a_k$에 대하여 다음과 같은 벡터 $v$를 $S$의 일차결합(Linear combination)이라 한다. $$ v = a_1u_1 + ... + a_ku_k $$ 이때, $v$는 벡터 $u_1,...,u_k$의 일차결합이며 $a_1,...,a_k$를 계수(Coefficient)라고 한다. * 여기서, 정의에 따라 벡터 한 개와 스칼라의 곱 또한 일차결합에 해당함에 유의하자. 부분 공간의 정의에 따라, $S$의 모든 일차결합은 $V$에 속한다. 증명) $..
ML&DL/Math for ML
2024. 1. 1.
-
다중 분류 모델과 카테고리 분포
다중 분류 모델과 카테고리 분포 다중 분류 문제는 주사위를 굴렸을 때 각 면이 나올 확률을 계산하는 문제처럼, 세 개 이상의 결과를 가지는 상황에서 각 결과의 확률을 구하는 문제이다. 이러한 다중 분류의 확률분포는 카테고리 분포(Categorical distribution)을 따르므로, 다중 분류 모델은 카테고리 분포를 예측하는 모델로 정의할 수 있다. 카테고리 분포 카테고리 분포는 베르누이 분포를 일반화한 분포로, K개의 사건의 확률을 표현한다. $$ p(x|\mu)=\Pi^K_{k=1} \mu_k^{x_k} $$ $$ \mu = (\mu_1, \mu_2, ..., \mu_K)^T, \ \Sigma^K_{k=1}\mu_k=1 $$ $$ x = (x_1, x_2, ..., x_K)^T, \ x_k = 1..
ML&DL/ML DL 기본기
2022. 7. 13.