Processing math: 100%
-
Rank, Basis, Span (+ Gram-Schmidt Process)
Rank, Basis, Span Rank, Basis 그리고 Span은 선형 대수학에서의 핵심 개념 중 하나이다. 이는 행렬 기반으로 연산이 수행되는 대부분의 머신러닝 개념의 근간이 되므로 잘 알아두는 것이 좋다. Rank Rank(랭크)는 행렬에서 선형 독립(일차 독립)인 행 또는 열의 최대 개수를 의미한다. 이는 또한 행렬이나 벡터 공간의 벡터로 만들 수 있는 부분 벡터 공간의 차원이다. 행렬의 실제 행 또는 열의 개수가 랭크보다 크다면 일부 벡터가 서로 선형 종속(일차 종속) 관계임을 알 수 있다. *일차 독립, 일차 종속이란? 일차결합, 일차종속, 일차독립 일차결합, 일차종속, 일차독립 일차결합 일차결합(Linear Combination)의 정의는 다음과 같다. 벡터공간 V의 공집합이 아닌 부..
ML&DL/Math for ML
2024. 3. 16.
단축키
내 블로그
내 블로그 - 관리자 홈 전환 |
Q
Q
|
새 글 쓰기 |
W
W
|
블로그 게시글
글 수정 (권한 있는 경우) |
E
E
|
댓글 영역으로 이동 |
C
C
|
모든 영역
이 페이지의 URL 복사 |
S
S
|
맨 위로 이동 |
T
T
|
티스토리 홈 이동 |
H
H
|
단축키 안내 |
Shift + /
⇧ + /
|
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.