분산2 회귀분석 회귀분석 지도 학습 (Supervised Learning) Y = f(X)에 대하여 입력 변수 X와 출력 변수 Y의 관계에 대하여 모델링하는 것 회귀(regression): 입력 변수 X에 대해서 연속형 출력 변수 Y를 예측 분류(classification): 입력 변수 X에 대해서 이산형 출력 변수 Y를 예측 회귀분석 입력 변수인 X의 정보를 활용하여 출력 변수인 Y를 예측하는 방법으로, 크게 선형회귀분석 / 비선형회귀분석으로 나뉜다. 1. 단순 선형 회귀분석 입력 변수가 X, 출력 변수가 Y일때, 단순 선형 회귀의 회귀식은 위와 같다. 위 식에서 $\beta_0$는 절편(intercept), $\beta_1$은 기울기(slope)이며, 둘을 통틀어 회귀계수(coefficients)라고 한다.($\ep.. ML&DL/ML DL 기본기 2021. 12. 11. 과적합(Overfitting) 과적합(Overfitting) 1. 과적합이란 학습 데이터에 대해서는 높은 정확도를 보이지만, 검증 데이터 혹은 테스트 데이터에 대해서는 정확도가 낮은 경우를 의미한다. 복잡한 모형일수록, 데이터가 적을수록 과적합이 일어나기 쉽다. 과적합은 데이터 사이언스뿐만 아니라 AI 전반적으로 매우 큰 이슈 아래 그림은 회귀분석에서 고차항을 넣었을 때 만들어지는 직선 2. 분산(Variance)과 편파성(Bias) 3. 분산과 편파성의 트레이드오프(Tradeoff) 딜레마 분산과 표준편차가 모두 낮은 경우 (좌측 상단) 거의 존재하지 않는, 가장 이상적인 상황이다. 타깃 값에 높은 정확도를 가지고 적중함을 확인할 수 있다. 분산과 표준편차가 모두 높은 경우 (우측 하단) 예측값이 한 곳에 모이지도 않았고 타깃 값에.. ML&DL/ML DL 기본기 2021. 12. 7. 이전 1 다음