Online metrics1 서비스를 고려한 추천시스템 성능 평가 방법 서비스를 고려한 추천시스템 성능 평가 방법론 일반적인 머신러닝과 마찬가지로, 추천시스템 또한 실제 서비스에 배포하기 전에 성능을 평가함으로써 모델의 안정성을 확인할 수 있다. 그러나 추천시스템의 경우 평가 방식이 일반적인 모델과 다소 다른 평가 방법을 가지기도 하며, 실제 서비스에 적용할 때 고려해야 될 사항이 좀 더 많은 편이다. 가장 먼저 '추천'이란 태스크의 특성상 정답이 모호한 경우가 많으며 실제 서비스에 적용할 경우 트렌드의 변화에 따른 인기 상품의 변화와 같은 이유로 모델의 성능과 별개로 사용자 만족도가 급격히 감소하거나 Long-tail 문제, False Positive 문제와 같이 결과의 Skew를 일으킬 수 있는 문제 또한 존재한다. 그렇다면, 추천시스템은 어떻게 평가해야 하고, 또 어떻.. ML&DL/추천시스템 2024. 2. 12. 이전 1 다음